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• Today’s Lessons Learned

• Materials and Structures Technology Development

• Future Materials and Structures Applications
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Lessons Learned

1.  Materials development in conjunction with product development creates undue risks.

2.  Experienced materials and processing engineers should be included in the design
phase and must be readily available to correct problems in production processes.

3.  Manufacturing process scale-up development tests should be conducted to optimize the
production processes.

4.  Co-curing and co-bonding are preferred over secondary bonding which requires near
perfect interface fit-up.

5.  Mechanically fastened joints require close tolerance fit-up and shimming to assure a
good fit and to avoid damage to the composite parts during assembly.

6.  Dimensional tolerances are more critical in composites than in metals to avoid damage
to parts during assembly.  Quality tools are essential to the production of quality parts.

7.  Selection of the tool material depends on part size, configuration, production rate,
quantity, and company experience.

8.  Tool designers should anticipate the need to modify tools to adjust for part springback,
ease of removal, or maintain dimensional control of critical interfaces.
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Materials, Processes, and Manufacturing



Lessons Learned:

1.  Design and certification requirements for composite structure are generally more
complex and conservative than for metal structure.

2.  Successful programs have used the building-block approach with a
realistic schedule that allows for a systematic development effort.

3.  The use of basic laminates containing 0/90/+45/-45 plies with a minimum of 10% of the
plies in each direction is well suited to most applications.

4. Mechanical joints should be restricted to attachment of metal fittings and situations
where assembly or access is impractical using alternative approaches.

5.  Large, co-cured assemblies reduce part count and assembly costs but may require
complex tooling.

6.  Structural designs and the associated tooling should be able to accommodate design
changes associated with the inevitable increases in design loads.

7.  Understanding and properly characterizing impact damage would eliminate confusion in
the design process and permit direct comparison of test data.

Structural Design, Analysis, and Testing



Lessons Learned:

1.  Automated processes can help to reduce QC costs.

2.  Inspection and quality control should focus on aspects of the process and part that have
a direct bearing on part performance.

3.  Determine and understand the effects of defects on part performance.

4.  Supportability should be addressed during design so that composite
structures are inspectable, maintainable and repairable.

5.  Most damage to composite structure occurs during assembly or routine maintenance of
the aircraft.

6.  Repair costs are much higher than for metal structures.

7.  Improved Standard Repair Manuals are needed for in-service maintenance and repair.

8.  Special long-life and low-temperature curing repair materials are required.

9.  Moisture ingestion and aluminum core corrosion are recurring supportability problems
for honeycomb structures.

Quality Control, NDE/I, and Supportability
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Evolution of Composite Resin Development:
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Computationally Designed Materials and Structures
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Cryotanks

•  Sandwich construction (TRL=4)
•  Nonautoclave curing (TRL=3)
•  Nondestructive evaluation (TRL=4)
•  Vehicle health monitoring (TRL=3)
•  Integrated TPS / cryoinsulation (TRL=2)

Leading Edges / Nose Caps

•  Refractory composites (TRL=9)
•  Hot-structure control surfaces (TRL=5)

Thermal Protection System

•  High temperature metallics (TRL=5)
•  Refractory composites  (TRL=4)
•  Advanced flexible insulation (TRL=6)

Primary Structure

•  High-temperature metal composites (TRL=4)
•  Noncircular composite shell structures (TRL=3)
•  Joints and attachment techniques (TRL=4)
•  Nondestructive evaluation (TRL=4)
•  Manufacturing technology  (TRL=4)

Assessment of Technology Needs for an RLV 
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1.  Application-Specific Aero-space Programs
•  Affordable “Point-to-Point” Personal Aircraft
•  Large Transport Aircraft (e.g., Blended-Wing Body)
•  Sensorcraft  
•  Lunar/Mars Transportation Vehicles for Human Exploration

2.  Brilliant Products and Systems
•  Multifunctional Materials and Structures
•  Highly-Integrated Instruments and Structures for Sensorcraft 
•  Ultra-Smart Materials and Structures
•  Radiation Effects and Radiation Shielding Materials

3.  Computing, Design, and Analysis Methods and Tools
• Optical, Quantum, and Biological Computers
•  Fully Immersive Concept-To-Flight Design Environment
•  Flexible Integration of Modeling and Design Techniques
•  Intelligent agents, Fuzzy, and Nondeterministic Analysis Methods

4.  Experimental Methods and Test Techniques
•  Remote access to facilities and laboratories through virtual reality
•  Automated, Digitally-Controlled Testing Techniques

Programs, Products, and Services for 2009



Structures & Materials Skills Evolution

• Classical metals, polymers, ceramics, and composites development
skills transitioning to nano-, smart-, functionally graded,
multifunctional, environmentally friendly, computational, and biomimic
designed M&S systems

• Classical applied mechanics, dynamics, aeroelasticity, and
computational methods skills transitioning to multidisciplinary
computational aero-servo-thermal-structure-materials methodology;
and mathematically nondeterministic, nonlinear, fuzzy, probabilistic,
design and analysis tools

• Traditional point-by-point external diagnostic sensors skills
transitioning to intelligent, distributed, in-situ diagnostic, and self-
healing systems.



Areas of Expertise at 
NASA Langley Research Center

AoE 1. Develop advanced materials and processing technologies to enable
the fabrication of low-cost and high-performance structural concepts for
aerospace applications.

AoE 2. Conduct research and technology development that accurately and
efficiently predict behavior, durability and damage tolerance, evaluates
concepts, and validates performance of advanced materials and structures for
aerospace structural applications.

AoE 3. Conduct research and technology development for advanced sensors,
intelligent systems, and ground operations to ensure structural integrity,
reliability, and safety for aerospace vehicles.

AoE 4. Conduct research and technology development to quantify and control
aeroelastic response, unsteady aerodynamic flow phenomena, and
structural dynamics behavior for aerospace vehicles.



• New materials, processing, structural concepts, and

  sensors will enable dramatically improved applications

• Reusable launch vehicles and future spacecraft will

  demonstrate advanced materials and structures
  technologies

Concluding Remarks



Coupon Testing
for Material
Properties

Design Concepts
and Analysis
Development

Manufacturing
Process
Development
and Scale-up

Concept
Demonstration at
Component Level

Full-Scale
Structural
Verification

• Mechanical Properties

• H2 Permeability tests
   (4 in. x 4 in.)
• Flatwise Tension Tests
   (2 in. x 2 in.)

• Gr-Ep/Foam Panel
   (LaRC TEEK HH)

• Thermally Cycled PMC/Foam
   Insulation

• Fluted Core Splice Joint

Development of Advanced Cryotank and Airframe
Structures Building-Block Approach



•  Atomic Oxygen Resistance

•  High Specific Strength

•  Selected for ProSEDS
   Flight Demonstration

Tethers for Propellant-Free
 Propulsion

Solar Thermal Propulsion
Upperstage 

•  Low Color, Low Solar Absorption

•  High Reflectivity

•  Selected for Primary Collector on
    Boeing’s SOTV

Application of LaRC-Developed Materials



•  Cargo hold and fuel tank explosions
•  Modify Aircraft Landing Dynamics Facility (high load, high speed, larger tires)*
•  High-temperature and cryo-temperature capability for COLTS*
•  Electro-Magnetic upgrade to TDT*
•  Hypersonic flow simulation (ARC Jet)
•  Nano-sensor facility*
•  In-Situ Materials Processing Lab
•  Laser Deposition Fabrication Lab
•  High-conductivity property characterization
•  Advanced automated materials manufacturing lab
•  Biochemistry Lab*
•  Large graphitization fabrication facility
•  Free-form fabrication facility
•  Large brazing fabrication facility
•  Rapid prototyping fabrication lab
•  3-D virtual reality computational test lab*

*Facilities located at LaRC

New/Enhanced Facilities Required for 2009



Autoclave & Vacuum Hot Press
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Affordable Processing

• E-Beam Cures
• Non-Autoclave Curing
• RFI/Stitched Preforms

Evolution of Composite Resin Development: Epoxies


